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ABSTRACT

~ The storage and retrieval of patterns in a Hopfield-like Parallel Distributed Mem-
ory is investi’gated experimentally with a view toward increasing its storage capacity.

The first two Chapters give an overview of distributed nicinories and in particular
the Hopfield distributed memory. This is followed by a Chapter which experimen-
tally identifies the basic storage capacity of the original Hopfield memory when
using text patterns.

This dissertation then experimentally investigates new and untested methods to
increase the storage capabilities of a Hopfield-like neural net. Increasing the storage
capacity by using the continuous-valued Hopfield memory is explored in Chapter 3
and the impact on capacity of data representation is experimentally investigated in
Chapter 4. We then focus on new ways of storing data (changing the interconnect
strengths) including in Chapter 7 developing a new method called Modifying the

Energy Contour or MEC. In addition, this Chapter also outlines how to increase

. g/: L . L /' )
error-tolerance through the use of noisy patterns. o dsl Cprer corr e IR
P

The Hopfield distributed memory is then contrasted to another intelligent mem-
ory subsystem based on more of a traditional computer technology. In Chapter 8
we see that traditional compu‘ter technology using data-parallel techniques has a
greater storage efficiency than possible with current Hopfield-like distributed mem-
ories. The design of this data-parallel memory is based in part on what is learned

experimentally from the preceding Chapters on the Hopfield-like distributed mem-
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N ory. This fast data-parallel approach also supports retrieval of data patterns with

e .
s noisy inputs although it does not have all the functionality of the Hopfield-like

AN distributed memory.
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The following three results are the most significant outcomes of this

dissertation. Experimentally, it was determined that:

¢ The Hopfield memory would support new methods for adaptation or learning
of patterns and that recall was done by a parallel, nearest-neighbor pattern

search procedure.

e The storage capacity of the Hopfield-like memory can be improved but the
storage efficiency is far less than data-parallel based associative memories. In

addition, experiments show that:

— the way in which data is represented can greatly impact storage capacity

and error-tolerance in Hopfield distributed memories,

— a single layered fully connected Hopfield-like memory can have more
than n stored stable states when using the Modified Energy Contour
storage process to develop the interconnect strenghts (where n is the

dimensionality of stored patterns), and

— when storing 200 randomly generated 96-bit balanced coded patterns,
34% of the recall patterns with up to 5% error were still completely cor-

rectable when using the MEC process and training with noisy patterns.

¢ A data-parallel implementation of the Nearest-Neighbor Rule provides for
fast parallel search of pattern space and can support software-based learning
procedures. This implementation can then behave as a Parallel Associative

Memory dealing with inexact data in the recall key.
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